2. TINJAUAN PUSTAKA

2.1. Shipping Lines dan Logistik

Shipping lines dan logistik merupakan bentuk bisnis jasa pelayanan transportasi dari mulai perencanaan stuffing cargo di warehouse hingga pengiriman antarpulau menggunakan transportasi multimoda dengan menggunakan armada transportasi darat, laut, dan udara. Shipping line adalah pihak yang mengangkut barang dari pelabuhan muat menuju pelabuhan bongkar yang disebut juga sebagai perusahaan pelayaran. Menurut Chandra dalam Council of Supply Chain Management Professionals 2013, logistik adalah bagian dari manajemen rantai pasok (supply chain) dalam perencanaan, pengimplementasian, pengontrolan aliran serta penyimpanan barang, informasi, dan pelayanan yang efektif dan efisien dari titik asal ke titik tujuan sesuai dengan permintaan konsumen. Menurut Bowersox dan Ali (2002:13), logistik adalah proses pengelolaan yang strategis terhadap pemindahan dan penyimpanan barang, suku cadang, dan barang jadi dari para *supplier* yang diantaranya fasilitas-fasilitas perusahaan dan kepada para customer. Ada beberapa aktivitas yang dilakukan dalam kegiatan logistik, di antaranya adalah:

- a. Customer service
- b. Forecasting demand dan supply
- c. Logistics communication
- d. *Inventory management*
- e. Material handling
- f. *Traffic and* transportation
- g. Warehouse and storage

Saat ini, sebagian besar transportasi kontinental ditangani oleh alat berat (heavy equipment). Pola transportasi bisnis-ke-bisnis angkutan antarmoda setidaknya terdiri dari business-to-hub-to-hub-to-business, dimana contohnya hub tersebut dapat berupa pelabuhan atau stasiun kereta api. Dalam konfigurasi ini, waktu tunggu pengangkutan non-HVE akan sangat signifikan lebih tinggi (Macharis dan Bontekoning, 2004).

2.2. Jenis dan Klasifikasi Petikemas

2.2.1. Jenis Petikemas

Disebutkan dalam Buku Logistik Indonesia karya Kuncoro Harto Widodo (2022) bahwa petikemas dapat dibagi menjadi beberapa jenis, yaitu :

 General Cargo Container atau General Cargo Purpose (GP) untuk muatan umum. Petikemas jenis ini berfungsi untuk mengangkut berbagai jenis muatan kering atau general cargo yang tidak memerlukan pemeliharaan khusus. Petikemas semacam ini sangat sesuai untuk memuat barang yang dikemas dalam karton pada lantai dan dinding.

Berdasarkan data yang didapatkan dari perusahaan tempat penelitian dilakukan, terdapat beberapa kelas atau *grade* terhadap kualitas petikemas antara lain:

- a. *Grade* A: Petikemas dengan kualitas sangat baik, biasanya digunakan untuk muatan food grade, sabun, rokok, sayur-sayuran, buah-buahan segar, serta barang elektronik.
- b. *Grade* B: Petikemas dengan kualitas baik, biasanya digunakan untuk muatan furnitur atau perabot, kebutuhan rumah tangga, kendaraan unit baru, karton atau kardus, sparepart kendaraan, serta barang elektronik.
- c. *Grade* C: Petikemas dengan kualitas rendah. Petikemas jenis ini digunakan untuk memuat kompos, pupuk, besi profil, pipa besi, kendaran, profil baja, arang, dan kulit kelapa.
- 2. Spesial Ventilated Container (SVC) untuk muatan yang berkeringat/basah, bau atau mudah rusak.
- 3. *Open Top/Side Container* (OT/OS) dibuat dari *steel* untuk alat berat, mesin, dan sebagainya. Dimasukkan dari atas dengan menggunakan derek.
- 4. *Flat Rack Container* (RFC) untuk mesin-mesin atau alat berat dan sebgainya yang mungkin memakan ruang lebih dari ukuran 20' atau 40', berlantai dasar kuat dan kokoh.
- 5. *Dry Bulk Container* (DBC) untuk muatan curah.
- 6. *Tank Container* (TC). Tangki dilindungi rangka besi untuk muatan cair/gas.
- 7. Refrigerated Container (RC). Bermesin pendingin untuk pendingin digunakan untuk buah-buahan, daging, dan sebagainya.

2.2.2. Klasifikasi Petikemas

Dalam buku Logistik Indonesia karya Kuncoro Harto Widodo (2022), dijelaskan bahwa *International Standard Organization* (ISO) telah menetapkan sejumlah dimensi yang berlaku untuk petikemas. Meskipun tinggi petikemas bisa bervariasi, lebar petikemas selalu tetap 8 kaki. Terdapat beberapa variansi panjang petikemas (*container*). Di Indonesia, petikemas berukuran 20ft dan 40ft biasanya yang paling umum digunakan. Untuk mengklasifikasikan petikemas, digunakan unit-unit seperti TEU (*Twenty Equivalent Unit*) dan FEU (*Fourty Equivalent Unit*).

2.2.3. Kategori dan Status Petikemas

Terdapat beberapa kategori dan status petikemas (*container*) yang disebutkan oleh Engkos dan Hananto Soewedo (2012) dalam buku "Manajemen Perusahaan Pelayaran" antara lain:

- a. Impor (I) petikemas yang direncanakan untuk dibongkar, Ekspor I untuk dimuat, *Transhipment* (T) untuk diturunkan dan dinaikkan lagi ke 2 carrier.
- b. Restow I peletakan perlu diatur lagi ke kapal untuk efisiensi *space* kapal: *Remained on Broad* (ROB), petikemas yang tetap di kapal sama sekali tidak diturukan ke terminal.
- c. Full Container Load (FCL): muatan dalam satu petikemas hanya milik satu shipper atau consignee. LCL (Less Container Load): muatan dalam petikemas milik beberapa shipper atau consignee.
- d. *Empty Container* (MT): Petikemas kosong dikumpulkan di depo MT untuk proses ekspor dan impor.

Selain definisi yang telah disebutkan, dalam praktik di lapangan, manajer dan pengurus armada darat dari perusahaan pelayaran logistik di Surabaya memberikan beberapa penjelasan tambahan mengenai status petikemas yang digunakan dalam operasional sehari-hari:

- a. FOB: Full On Board. Posisi Petikemas masih di atas kapal
- FXD: Full Ex-Discharged. Petikemas telah dikeluarkan dari atas kapal.
- c. FAC: *Full Assigned to Consignee*. Petikemas sudah menuju ke pemilik barang.
- d. MTA: *Empty Available*. Petikemas dalam kondisi kosong siap digunakan.

- e. MTB: *Empty to Booking*. Petikemas kosong siap untuk disewakan khusus untuk kebutuhan muatan *inbound* atau dalam depo.
- f. MAS: *Empty to Shipper*. Petikemas kosong siap untuk digunakan untuk kebutuhan muatan *outbond* atau luar depo.
- g. MTL: *Empty to Loading*. Petikemas kosong yang telah dikembalikan dari proses *dooring*.
- h. FTL: *Full to Loading*. Petikemas dalam kondisi sudah dimuat di luar depo/*outbond*.
- i. MTD: *Empty damaged*. Petikemas kosong dalam kondisi rusak

2.3. Pengertian *Lean Six Sigma*

Istilah "lean" yang dikenal luas dalam dunia manufaktur dewasa ini dikenal dalam berbagai nama yang berbeda seperti: lean production, lean manufaktur, Toyota Production System, dan lain-lain (Khannan dan Haryono, 2015). Meskipun demikian, *lean* dipercaya oleh sebagian dikembangkan di Jepang, khususnya Toyota sebagai pelopor sistem lean manufaktur. Prinsip utama dari pendekatan *lean* adalah untuk mengurangi atau meniadakan pemborosan (Pujawan, 2002). Untuk menghilangkan pemborosan dan beberapa tantangan manufaktur lainnya, teknik *lean* manufaktur diperlukan untuk mencapai tujuan ini di industri. Pendekatan *lean* manufaktur layak dilakukan untuk pemetaan proses yang efektif dan identifikasi aktivitas bernilai tambah dan non-nilai tambah. Di sisi lain, tools six sigma adalah metode ilmiah, sistematis, statistik, dan cerdas yang cocok untuk meningkatkan kualitas produk, inovasi, serta meningkatkan kepuasan customer (Krueger et al., 2014; Hekmatpanah et al., 2015; Gupta et al., 2018). Model six sigma adalah DMAIC (Define, Measure, Analyze, Improve, Control) (Cronemyr, 2007; Improta et al., 2017 Ricciardi et al., 2020) yang biasanya diterapkan untuk perbaikan proses yang ada. Sedangkan DMADV (Define, Measure, Analyze, Design, Verify) (Uluskan dan Oda, 2019; Jones et 2014) digunakan untuk pengembangan produk baru. Integrasi pendekatan *lean* dan *six sigma* disebut sebagai *Lean Six Sigma* (LSS). LSS dapat membantu industri manufaktur dalam mencapai *zero defect,* optimalisasi produksi, peningkatan kualitas produk dan mempercepat lead time pengiriman dengan biaya optimal sehingga membantu organisasi untuk memenuhi ekspektasi customer di masa depan.

Pendekatan *lean* berfokus pada pengurangan pemborosan melalui minimalisasi kesalahan *survey container*, variasi komponen untuk meningkatkan kualitas *availability container. S*edangkan pendekatan *six* sigma berfokus pada optimalisasi proses untuk meningkatkan efisiensi proses. Oleh karena itu, kombinasi kedua metodologi ini akan mendorong tidak adanya toleransi terhadap waste dan defect selama proses penyediaan container di depo. Penelitian yang ada telah melaporkan penggunaan pendekatan LSS untuk penyelarasan strategi organisasi, pengurangan waste, peningkatan kinerja produksi, dan peningkatan kepuasan customer di berbagai sektor seperti kesehatan, manufaktur, pendidikan, perbankan dan lain-lain (Furterer dan Elshen nawy, 2005; Laureani dan Antony, 2010; Edgeman 2010; Shahada dan Alsyouf, 2012; Meza dan Jeong, 2013; Ben Ruben et al., 2017; Bazrkar et al., 2017; Ahmed et al., 2018; Sunder dan Mahalingam, 2018; Gijo et al., 2018). Hasil dari upaya ini menentukan kesesuaian pendekatan LSS dalam mencapai pengurangan waste dan keunggulan operasional dalam suatu organisasi. Secara khusus, penerapan pendekatan six sigma DMAIC untuk mencapai perbaikan proses di sektor operasi perkeretaapian dan manufaktur telah disoroti (Maleka et al., 2014; Nedeliakova et al., 2019). LSS adalah strategi untuk mendorong peningkatan kualitas, sehingga dapat membantu organisasi mencapai keunggulan operasional, pengurangan limbah, dan perbaikan proses. Penerapan digitalisasi di pelabuhan-pelabuhan Indonesia telah membawa perkembangan signifikan di berbagai aspek, termasuk operasional laut, darat, dan customer. Praktik pelayaran yang *lean*, seperti digitalisasi dan kolaborasi, dapat berkontribusi pada pengurangan *waste* di industri pelayaran. Dalam mengintegrasikan *lean* dan *six sigma, approach* yang digunakan bervariasi karena bergantung pada kebutuhan dan permasalahan yang terdapat pada bisnis proses yang ada. Untuk penelitian ini penulis menggunakan DMAIC sebagai kerangka penelitiannya. Pada dasarnya, DMAIC adalah metodologi standar six sigma yang dibagi menjadi lima fase: Define, Measure, Analyze, Improve, dan Control. Dalam implementasi DMAIC juga menggunakan tools yang berhubungan dengan *lean* agar hasilnya lebih optimal. Tinjauan literatur dilakukan untuk menentukan alat yang tepat dapat digunakan dalam penelitian ini. Penentuan alat-alat tersebut juga didasarkan pada penelitian

lapangan dan identifikasi masalah yang dilakukan sebagai langkah awal dalam pembuatan penelitian ini.

2.4. SIPOC Chart

Menurut Pyzdek dan Keller (2014) SIPOC didefinisikan sebagai alat yang digunakan dalam konteks Six Sigma untuk memetakan proses bisnis dari awal hingga akhir. SIPOC adalah akronim dari Suppliers (Pemasok), Inputs (Input), Process (Proses), Outputs (Output), dan Customers (customer). Alat ini berfungsi untuk memberikan gambaran menyeluruh tentang elemen-elemen utama yang terlibat dalam suatu proses bisnis. Dengan mengidentifikasi siapa pemasoknya, apa saja input yang dibutuhkan, langkah-langkah proses yang dilakukan, output yang dihasilkan, dan siapa customernya, SIPOC membantu tim proyek untuk memahami dan mendokumentasikan seluruh alur kerja yang ada dalam sebuah proses.

Penggunaan SIPOC dalam Six Sigma bertujuan untuk memastikan bahwa semua pihak yang terlibat dalam proyek perbaikan memiliki pemahaman yang sama tentang proses yang sedang dianalisis. Dengan memetakan proses secara visual, SIPOC membantu dalam mengidentifikasi potensi masalah atau area yang memerlukan perbaikan. Selain itu, alat ini juga berguna dalam menetapkan batasan proyek dan memastikan bahwa upaya perbaikan difokuskan pada aspek-aspek yang paling kritis. Dengan demikian, SIPOC tidak hanya berfungsi sebagai alat pemetaan, tetapi juga sebagai dasar untuk komunikasi yang efektif, kolaborasi tim, dan pengambilan keputusan yang lebih baik dalam konteks upaya peningkatan kualitas dan efisiensi proses bisnis. Menurut Pande, Neuman, dan Cavanagh (2000) dalam buku mereka "*The Six Sigma Way: How GE, Motorola, and Other* Top Companies are Honing Their Performance," SIPOC adalah alat penting digunakan oleh perusahaan-perusahaan terkemuka yang untuk meningkatkan kinerja mereka melalui pemetaan dan analisis proses. SIPOC, yang merupakan singkatan dari Suppliers (Pemasok), Inputs (Input), Process (Proses), Outputs (Output), dan Customers (customer), digunakan untuk memberikan gambaran menyeluruh tentang suatu proses bisnis dari awal hingga akhir. Alat ini membantu tim proyek untuk dengan jelas melihat elemen-elemen kunci dalam suatu proses, mulai dari pemasok yang menyediakan bahan atau informasi, input yang diperlukan untuk memulai

proses, langkah-langkah dalam proses itu sendiri, output yang dihasilkan, hingga customer yang menerima output tersebut.

2.5. Capability Process

Capability process adalah salah satu konsep kunci dalam metodologi Lean Six Sigma yang digunakan untuk mengukur kemampuan suatu proses dalam menghasilkan output yang sesuai dengan batas spesifikasi yang telah ditentukan. Lean Six Sigma memanfaatkan metodologi DMAIC (Define, Measure, Analyze, Improve, Control) untuk mengidentifikasi dan mengurangi variasi, mengurangi cacat, serta meningkatkan efektivitas proses. Singh dan Rathi (2019) menyatakan bahwa, "Lean Six Sigma menggunakan pendekatan DMAIC untuk mengurangi variasi, mengurangi cacat, dan meningkatkan evaluasi proses, sehingga dapat menghasilkan penghematan finansial yang signifikan".

Menurut Learn Lean Sigma (2023), analisis *capability process* melibatkan penggunaan indeks Cp dan Cpk untuk menilai seberapa baik suatu proses dapat menghasilkan output dalam batas spesifikasi yang telah ditentukan. "Indeks *capability process* seperti Cp dan Cpk digunakan untuk mengukur seberapa baik suatu proses mampu menghasilkan produk berkualitas dengan variasi minimal". Indeks Cp mengukur kemampuan potensial proses jika proses tersebut terpusat, sedangkan indeks Cpk memperhitungkan pergeseran rata-rata proses dari target.

Selain itu, integrasi *Lean Six Sigma* dengan teknologi Industry 4.0 juga dapat meningkatkan *capability process* secara signifikan. Skalli et al. (2023) menjelaskan bahwa, "Kombinasi *Lean Six Sigma* dan teknologi Industry 4.0 memungkinkan organisasi untuk mengurangi limbah, cacat, dan meningkatkan kualitas produk melalui penerapan data besar dan teknologi otomatisasi", Skalli et al. (2023). Pendekatan ini membantu organisasi tidak hanya dalam meningkatkan efisiensi operasional tetapi juga dalam membangun budaya bisnis yang lebih responsif terhadap perubahan dan kebutuhan pasar.

2.6. Fishbone Analysis

Fishbone analysis, juga dikenal sebagai diagram Ishikawa atau diagram sebab-akibat adalah alat visual yang digunakan untuk

mengidentifikasi dan menganalisis penyebab suatu masalah atau akibat (Shinde et al., 2018). *Fishbone* diagram disusun dalam bentuk kerangka ikan, dengan dampak atau masalah ditempatkan di kepala diagram dan potensi penyebab bercabang sebagai "tulang" ikan. Diagram ini membantu menganalisis secara sistematis faktor-faktor yang berkontribusi terhadap suatu masalah, mengkategorikan penyebab potensial secara visual ke dalam cabang atau kategori yang berbeda, seperti 6 M (*material*, *method*, *man power*, *machine*, *measurement*, dan *environtment*).

Menurut jurnal yang ditulis oleh Kumar (2018), *fishbone analysis* memberikan beberapa manfaat penting dalam konteks manajemen rantai pasok dan proses bisnis di industri layanan kesehatan. Beberapa manfaat tersebut adalah sebagai berikut:

- a. Identifikasi Penyebab Akar Masalah: *Fishbone analysis* membantu dalam mengidentifikasi akar penyebab dari masalah yang ada dalam rantai pasok dan proses bisnis. Dengan memetakan semua potensi penyebab, tim dapat dengan jelas melihat faktor-faktor yang berkontribusi terhadap masalah tersebut.
- b. Analisis Sistematis: Metode ini memungkinkan analisis yang sistematis dan terstruktur dari berbagai faktor yang mungkin mempengaruhi masalah. Hal ini membantu dalam mengorganisir pemikiran tim dan memastikan bahwa tidak ada aspek penting yang terlewatkan.
- c. Visualisasi Masalah: *Fishbone diagram* menyediakan representasi visual dari masalah dan penyebabnya. Visualisasi ini memudahkan tim untuk memahami kompleksitas masalah dan berkomunikasi dengan lebih efektif tentang penyebab potensial.
- d. Kolaborasi dan Diskusi: Diagram ini memfasilitasi diskusi dan kolaborasi antar anggota tim. Setiap anggota tim dapat berkontribusi ide dan pandangannya, yang meningkatkan kemungkinan menemukan solusi yang efektif.
- e. Perencanaan Tindakan Perbaikan: Dengan mengetahui akar penyebab masalah, tim dapat merumuskan tindakan perbaikan yang lebih tepat dan efektif. Hal ini membantu dalam meningkatkan efisiensi operasional dan kualitas layanan di industri layanan kesehatan.
- f. Peningkatan Kualitas dan Efisiensi: Secara keseluruhan, penggunaan *fishbone analysis* membantu dalam meningkatkan kualitas dan efisiensi

- proses bisnis. Dengan mengatasi akar penyebab masalah, organisasi dapat mengurangi cacat dan inefisiensi, serta meningkatkan kinerja keseluruhan.
- g. Penelitian ini menunjukkan bahwa *fishbone analysis* adalah alat yang sangat berguna dalam mengevaluasi dan memperbaiki proses bisnis, khususnya dalam konteks industri layanan kesehatan, yang pada akhirnya meningkatkan efisiensi operasional dan kualitas layanan.

2.7. 5 Why Analysis

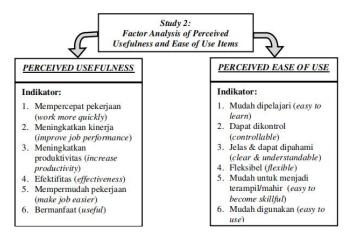
5 Why Analysis adalah teknik pemecahan masalah yang berfungsi untuk mengidentifikasi akar penyebab suatu masalah dengan bertanya "mengapa" secara berulang-ulang hingga penyebab mendasar ditemukan. Teknik ini pertama kali dikembangkan oleh Sakichi Toyoda dan digunakan secara luas dalam Toyota Motor Corporation sebagai bagian dari metodologi Lean Manufacturing dan Total Quality Management (TQM). Proses ini melibatkan penyusunan pernyataan masalah, mengajukan pertanyaan "mengapa" secara bertahap, mencari penyebab sistemik, mengembangkan tindakan korektif untuk menghilangkan akar penyebab masalah tersebut (Serrat, 2017). Salah satu penerapan praktis dari 5 why analysis dalam analisis data adalah untuk mengungkap akar penyebab masalah kualitas data (Safuan, 2023). Menurut (Ridwan et al., 2020) dengan menanyakan "mengapa" berulang kali dapat menggali lebih dalam dan mengungkap alasan yang mendasari inkonsistensi, ketidakakuratan, atau anomali data serta alasan mengapa ada inkonsistensi, ketidakakuratan, atau anomali data. Teknik 5 Why memiliki beberapa keuntungan seperti kesederhanaan dan kemampuannya untuk mengidentifikasi penyebab mendasar dari masalah. Kuswardana, Mayangsari, & Amrullah (2017) menyatakan bahwa, "5 Why Analysis adalah metode yang digunakan untuk mengidentifikasi penyebab dasar dari suatu kecelakaan kerja dengan bertanya 'mengapa' secara berulang-ulang hingga ditemukan penyebab mendasar".

2.8. Pengembangan Sistem Informasi

Penerapan sistem informasi yang efektif dapat memungkinkan perusahaan *shipping* untuk melacak dan mengelola inventaris,

mengotomatisasi proses bisnis, memantau kondisi kapal dan kargo secara *real-time*, serta mengoptimalkan penggunaan sumber daya yang tersedia (Safuan, 2023). Dalam desain *user interface*, analisis strategis harus dilakukan untuk memahami kebutuhan dan tujuan pengguna sehingga desain yang dihasilkan dapat memenuhi harapan dan kepuasan pengguna (Ilham et al., 2021). Aplikasi praktis seperti *wireframing*, pembuatan *prototipe*, pengujian kegunaan, dan riset pengguna sangat penting untuk meningkatkan pengalaman pengguna (Rodrigues, 2022). Menurut (Sophian, 2001) terdapat tiga manfaat sistem informasi bagi industri shipping di antaranya adalah:

- a. Meningkatkan efisiensi operasional: sistem informasi yang efektif dapat membantu meningkatkan efisiensi operasional dalam berbagai aspek industri shipping, termasuk pengaturan jadwal kapal, manajemen logistik, pengelolaan inventaris kargo, dan proses pembayaran serta dokumentasi.
- b. Mengoptimalkan penggunaan sumber daya: sistem informasi dapat membantu perusahaan *shipping* untuk mengoptimalkan penggunang around weather conditions and sea traffic, and managing payment transactions and documentation. Sistem informasi juga dapat membantu perusahaan *shipping* dalam mengoptimalkan penggunaan sumber daya, baik itu kapal, karyawan, maupun fasilitas pelabuhan.
- c. Memperbaiki pengambilan keputusan: dengan adanya sistem informasi yang terintegrasi dan memiliki kemampuan analisis data yang baik, perusahaan *shipping* dapat memiliki akses yang lebih baik ke informasi yang relevan dan akurat.


Dalam penelitian Ahsanullah tahun 2015 dijelaskan bahwa ada empat faktor yang mempengaruhi *user experience* yaitu *understanding user, understanding system, understanding context,* dan *understanding temporal aspec*t.

2.9. Technology Acceptance Model (TAM)

Technology Acceptance Model (TAM) adalah kerangka teoretis yang telah mapan dan telah diterapkan secara luas di berbagai industri untuk memahami dan memprediksi penerimaan serta penggunaan teknologi baru (Negovan et al., 2011). Model ini menyatakan bahwa niat seseorang untuk menggunakan teknologi terutama dipengaruhi oleh dua faktor utama:

kegunaan yang dipersepsikan dan kemudahan penggunaan yang dipersepsikan (Yang et al., 2014). Technology Acceptance Model meliputi beberapa konsep utama yang menjelaskan bagaimana pengguna menerima dan menggunakan teknologi baru. Berikut adalah landasan teori terkait TAM menurut Momani (2020):

- a. Perceived Usefulness (PU): Perceived Usefulness atau kegunaan yang dipersepsikan adalah sejauh mana seseorang percaya bahwa menggunakan suatu teknologi akan meningkatkan kinerja tugas mereka. Konsep ini menekankan bahwa jika pengguna merasa teknologi tersebut bermanfaat, mereka lebih mungkin untuk mengadopsi dan menggunakan teknologi tersebut.
- b. Perceived Ease of Use (PEOU): *Perceived Ease of Use* atau kemudahan penggunaan yang dipersepsikan adalah sejauh mana seseorang percaya bahwa menggunakan suatu teknologi akan bebas dari usaha yang besar. Konsep ini menunjukkan bahwa jika teknologi tersebut mudah digunakan, maka kemungkinan penerimaan dan penggunaannya akan lebih tinggi.
- c. Behavioral Intention (BI): Behavioral Intention atau niat perilaku adalah sejauh mana seseorang memiliki niat untuk menggunakan teknologi tersebut. Niat ini dipengaruhi oleh persepsi kegunaan dan kemudahan penggunaan.
- d. Attitude Toward Using (ATU): Sikap terhadap penggunaan adalah sejauh mana seseorang memiliki evaluasi positif atau negatif terhadap penggunaan teknologi. Sikap ini dipengaruhi oleh persepsi kegunaan dan kemudahan penggunaan.
- e. Actual Use (AU): Penggunaan aktual adalah sejauh mana teknologi tersebut benar-benar digunakan oleh pengguna. Penggunaan ini dipengaruhi oleh niat perilaku dan sikap terhadap penggunaan teknologi.

Gambar 2.1 Factor Analysis of TAM Items

Sumber: Davis (1989)

Menurut Davis (1989), terdapat dua variabel utama dalam *Technology Acceptance Model* (TAM). Variabel pertama adalah Perceived Usefulness atau manfaat yang dirasakan. Variabel ini mencakup enam indikator, yaitu mempercepat pekerjaan *(work more quickly)*, meningkatkan kinerja *(improve job performance)*, meningkatkan produktivitas *(increase productivity)*, efektivitas *(effectiveness)*, mempermudah pekerjaan *(make job easier)*, dan bermanfaat *(useful)*. Variabel kedua adalah *Perceived Ease of Use* atau kemudahan penggunaan yang dirasakan. Variabel ini juga memiliki enam indikator, yaitu mudah dipelajari *(easy to learn)*, dapat dikontrol *(controllable)*, jelas dan dapat dipahami *(clear and understandable)*, fleksibel *(flexible)*, mudah untuk menjadi terampil atau mahir *(easy to become skillful)*, dan mudah digunakan *(easy to use)*. Kedua variabel ini merupakan komponen utama dalam TAM yang digunakan untuk mengukur penerimaan teknologi oleh pengguna.

2.10. Uji Hipotesis

Hipotesis adalah sebuah pernyataan atau prediksi yang diajukan untuk diuji kebenarannya melalui pengumpulan data dan analisis. Hipotesis digunakan untuk mengajukan sebuah dugaan atau prediksi tentang hubungan antara variabel-variabel tertentu dalam suatu penelitian Aji et al., (2020). Hipotesis dalam penelitian ini yaitu:

a. Hipotesis nol (H0): Tidak ada perbedaan signifikan antara rata-rata *lead time* sebelum dan setelah menggunakan aplikasi *Finding Damaged*.

b. Hipotesis alternatif (H1): Terdapat perbedaan signifikan antara rata-rata *lead time* sebelum dan setelah menggunakan aplikasi *Finding Damaged*.

2.11. Penelitian Terdahulu

Berikut adalah penelitian penelitian terdahulu yang menggunakan approach DMAIC dari *Lean Six Sigma* dan juga penelitian yang berhubungan dengan pengambilan keputusan atas inpeksi yang dilakukan di beda tempat, sehingga dari *research gap* penelitian penelitian tesebut peneliti mengembangkan penelitian ini:

Table 2.1 Grafik Relokasi Container Damaged

No.	Year and	Title	Methods and	Limitations & Future
	Authors		Result	studies
1	[2022]	Application of	Lean Six sigma	Penelitian ini terbatas
	Ilesanmi	Lean Six	dapat membantu	pada studi kasus
	Daniyan,	Sigma	memecahkan	organisasi tunggal yang
	Adefemi	Methodology	solusi terkait	tidak cukup untuk
	Adeodu,	Using DMAIC	waktu	menarik kesimpulan
	Khumbul	Approach for	pengerjaan dan	umum. Penelitian ini
	ani	The	menurunkan	terbatas pada operasi
	Mpofu,	Improvement	waste	perakitan bogie gerbong
	Rendani	of Bogie		di industri gerbong.
	Maladzhi,	Assembly		Pertimbangan
	Mukondel	Process in		penggunaan satu unit
	eli Grace	The Railcar		departemen produksi
	Kana-Kan	Industry		adalah untuk
	a			mengurangi
	Katumba			kompleksitas proses
				perbaikan berkelanjutan
				(Page 13 Lesson learnt
				and limitation study).

				<i>Future Studies</i> yang
				dapat dilakukan
				menggunakan lebih dari
				satu <i>sample department</i>
				atau divisi untuk
				menambah
				kompleksitas dari
				penelitian dan
				mengambil sampling
				lebih dari satu
				organisasi agar hasil
				penelitian dapat
				dijadikan sebagai acuan
				secara umum.
2	[2023]	Development	Dengan	1. Kesimpulan ini
	Adefemi	of a	Approach DMAIC	didasarkan pada data
	Adeodu,R	Warehouse	berhasil	dari satu gudang yang
	endani	Process	meningkatkan	mungkin tidak cukup
	Maladzhi,	Improvement	PCE (<i>Process</i>	untuk menarik
	Mukondel	Framework	Cycle Efficiency),	kesimpulan umum bagi
	eli Grace	Using the	reduce lead time	sistem pergudangan
	Kana-Kan	Lean Six	dan <i>reduce non</i>	lainnya.
	а	Sigma	value added time	
	Katumba	(DMAIC)		2. Beberapa perangkat
	Ilesanmi	Approach: A		lunak <i>lean</i> mungkin sulit
	Daniyan	Case Study of		diadopsi untuk validasi
		Third-Party		proses karena data yang
		Logistics		dipertimbangkan.
		(3PL)		
		Services		3. Studi kasus yang
				dipertimbangkan
				terbatas pada logistik
				pihak ketiga, sehingga
				proses perbaikan

				menjadi lebih fleksibel
				dibandingkan
				sebelumnya
				(Page 16 Part Lesson
				learnt and limitation of
				study).
				Future Charling and
				Future Studies yang
				dapat dilakukan
				menggunakan lebih dari
				satu sample warehouse /
				object penelitian agar
				hasil penelitian dapat
				dijadikan sebagai acuan
				secara umum bagi sistem <i>warehouse</i>
				lainnya.
3	[2022]	Application of	Dengan <i>Aproach</i>	
3	Soukaina	the Lean Six		
	Fahdi	Sigma	Six Sigma dapat	'
	landi	Approach to	mengurangi <i>idle</i>	tidak dapat digunakan
		the Container	time dan	sebagai acuan di tempat
		Handling	mengoptimalkan	lain
		Process for	energi sehingga	
		Sustainable	mendapatkan	<i>Future studies</i> yang
		Processes	benefit secara	dapat dilakukan yaitu
		and Cleaner	financial,	pengembangan
		Production at	managerial dan	penelitian untuk
		Dry Port MITA	environmental.	mendapatkan standar
		in		leadtime yang optimal
		Casablanca,		kepada customer
		Morocco		
4	[2020]	Identifikasi	Metode yang	Keterbatasan dalam
	Ryan	Efektifitas	digunakan yaitu	penelitian ini adalah

	Faza	Faktor Pada	Tematic Analysis	masih minimnya
	Prasetyo	Proses Kerja	deskriptif dan	penelitian terdahulu dan
		Engineering	interpretif yang	referensi yang
		Kontraktor di	menggunakan	membahas dampak dan
		Proyek	tema dan	akibat pandemi
		Konstruksi	kemunculan	terhadap industri
		Secara Jarak	secara berulang.	konstruksi, padahal
		Jauh di Masa	Untuk membantu	industri konstruksi
		Pandemi	pengambilan	secara operasional
		Covid-19	keputusan jarak	adalah salah satu sektor
			jauh penulis	yang paling terdampak
			menggunakan	oleh pandemi sehingga
			BIM (<i>Building</i>	perlu adanya upaya
			Information	untuk mengembangkan
			<i>Modelling</i>) untuk	area penelitian ini
			mengetahui	mengingat kondisi pasca
			kondisi terkini	pandemi adalah kondisi
			pekerjaan di	baru yang penuh
			lapangan,	dengan ketidakpastian.
			namun belum	
			efektif karena	<i>Future studies</i> yang
			minimnya	dilakukan yaitu
			pengetahuan	pengembangan
			dan penerapan	penelitian ke industri
			BIM oleh	lain saat pandemi sudah
			stakeholder	berakhir.
5	[2018]	Manfaat	Survei	Keterbatasan dalam
	Raflis,	Penggunaan	Kuesioner:	penelitian ini
	Bambang	Building	Kuesioner yang	keterbatasan geografis
	Endro	Information	disebarkan	dimana hanya dilakukan
	Yuwono,	Modelling	kepada	penelitian di DKI Jakarta,
	Ripsky	(BIM) pada	perusahaan	tingkat kematangan
	Rayshan	Proyek	besar yang telah	penggunaan BIM
	da	Konstruksi	menggunakan	berbeda beda antar

		Sebagai	BIM dalam	perusahaan sehingga
		Media	proses	mengakibatkan variasi
		Komunikasi	komunikasi, data	dalam hasil yang
		Stakeholders	yang terkumpul	diperoleh.
			dianalisis	
			menggunakan	<i>Future studies</i> yang
			teknik SEM untuk	dilakukan yaitu
			mengevaluasi	melakukan penelitian
			hubungan antara	serupa di berbagai
			variabel laten.	wilayah lain di Indonesia
				atau di negara lain untuk
			Penelitian ini	mendapatkan gambaran
			adalah bahwa	yang lebih luas
			BIM memberikan	mengenai manfaat BIM,
			manfaat yang	melibatkan perusahaan
			signifikan	kecil dan menengah
			sebagai media	untuk memahami
			komunikasi yang	hambatan dan manfaat
			efektif dalam	BIM di berbagai skala
			meningkatkan	perusahaan
			kolaborasi di	
			antara	
			stakeholders	
			pada proyek	
			konstruksi di	
			perusahaan	
			besar di DKI	
			Jakarta	
6	[2023]	Analisis	Penelitian ini	Keterbatasan dalam
	Yogo	Pemanfaatan	menggunakan	pemahaman teknologi
	Pratomo,	Autonomous	metode kualitatif	AUV oleh personel juga
	Chiristian	Underwater	dengan	menjadi hambatan
	Lumban	<i>Vehicle</i> (AUV)	pendekatan	dalam penggunaan alat
	Tobing,	Hugin 1000	deskriptif, yang	ini secara efektif dan

Octav	Guna	melibatkan	efisien.
Bayu	Mendukung	wawancara,	
Dirgantar	Operasi	pengamatan,	Penelitian masa depan
а	Pushidrosal	dan	harus fokus pada
		dokumentasi.	pengembangan
			program pelatihan yang
			lebih intensif dan
			berkelanjutan untuk
			personel yang
			mengoperasikan AUV.
			Ini mencakup
			pemahaman teknologi,
			teknik operasi, serta
			analisis data hidrografi
			dan oseanografi yang
			dihasilkan oleh AUV