

Department of Civil Engineering Faculty of Civil Engineering and Planning Petra Christian University

ABSTRACT

The final thesis will deal with an immersed tunnel design of 13.37 km long based on the Flyland project, a project to expand Schiphol Airport on an artificial island (Flyland) in North Sea. Approximately 111 immersed tunnel elements will be needed to connect Flyland with an intermediate island between the Netherlands and Flyland itself, which each element consists of six segments of 20 m. In addition, the thesis will focus in the design for the deepest tunnel element (cross and longitudinal sections including the reinforcement and post-tensioning) of the project and later on remarks are given for other tunnel elements.

Based on the technical criteria mentioned in the report such as the clearance gauge, number of the traffic lanes, width of the pedestrian/inspection lanes, area for the ballast concrete, area for the interior equipment (ventilations, lightings, and signs), area of the service galleries, area to put on the GINA gasket, and area to put on the prestressed cables, then we come up with three tubes of 7.5 m and two service galleries of 1.35 m. The cross sections of the tunnel it self eventually has height of 11.2 m and width of 30.8 m.

The reinforcement in the tunnel element cross section will be designed in Indonesian code (SKSNI) by inserting several comparisons to NEN (Dutch Code) especially for the crack width control since there is no SKSNI crack width control parameter for the sea environment. The result shows that using the SKSNI (with steel yield stress of 400 MPa), the amount of reinforcement needed is 124 kg/m³, which is in between the normal range of 110 - 130 kg/m³ for the tunnel constructions in the Netherlands which normally use steel yield stress of 500 MPa. Meanwhile the density of reinforced concrete got is 24.4 kg/m³ (the density includes the post-tensioned cables)

For the longitudinal direction, post-tensioned cables design is applied mainly to bond the segments together in one whole element during the phases from the fabrication until the end situation. Design of the maximum positive moment is achieved from the transport phase with 1.5 meter *cosinus* wave (minimum design) and the maximum negative moment is taken from the transport phase without wave

Designing Immersed Tunnel Elements and Its New Final Joint in the Flyland Project

Department of Civil Engineering Faculty of Civil Engineering and Planning Petra Christian University

consideration (maximum design). Minimum compression stress of 0.3 MPa is given as a parameter on the total cross section of the element. Hence, the cables needed are 29 tendons of strands 19015^7 (FeP1860) which is distributed as follows: 11 cables in the roof and 18 cables in the floor. Eventually, total losses in the cables are calculated according to NEN 6720.

Due to the importance of flexibility needed within the segments of 20 meters, the expansion joints are fixed-in between the tunnel segments. The main purpose to this joint is to withstand the tunnel movements and make a water tight layer. The principle, details, and the incoming problem for the expansion joint subjected to Flyland project have been brought out in this report.

The element/unit joint are maintained firstly by the GINA gasket to get a temporary water seal. The GINA is then totally compressed by the horizontal water pressure after the room in between two elements is de-watered. Later on, omega seal as the main water seal will be put on. As the main water seal system, the service life time of the omega seal will be made twice of that for the tunnel itself. The details, the trial of the omega seal, and the incoming problems subjected to Flyland project are described in this report.

In between the last immersed tunnel element and the "cut and cover" tunnel, there will be a final/closure joint. A new design of the final joint is ought to be in situ constructed, then a new developed final joint is brought up in the discussion. A collar around the cast in situ tunnel is developed to have dry circumstances during constructing the closure joint of the tunnel. Moreover, improvements to a better construction and easier execution are the main objectives to the new final joint (closure joint patent: RCA-AA-99020).

The last but not the least, cost estimation is calculated to have a description all direct costs and indirect ones. However, the estimation is based on the tunnel element designed which is led to the total costs of all immersed tunnel elements.

Keywords: immersed tunnel, element, segment, cross section, longitudinal section, reinforcement, SKSNI, NEN, post-tensioned cables, expansion joint, element/unit joint, the new final joint, cost estimation.

Designing Immersed Tunnel Elements and Its New Final Joint in the Flyland Project

International Bachelor in Civil Engineering 2003 Faculteit Natuur en Techniek University of Professional Education

Hogeschool

van Utrecht

Department of Civil Engineering Faculty of Civil Engineering and Planning Petra Christian University

TABLE OF CONTENT

ii iii iv vii viii ix
iii iv vii viii ix
iv vii viii ix
vii viii ix
viii ix
ix
xiv
1
1
2
4
5
5
5
7
8
8
8
10
11
11
11
13
14
14
14

ix

International Bachelor in Civil Engineering 2003 Faculteit Natuur en Techniek University of Professional Education

	III.2.5 The area for ventilation, lighting and signs	15
	III.2.6 The area for the service galleries	15
	III.2.7 The area for GINA gasket (GINA-profile rubber)	15
	III.2.8 The area for cables of the longitudinal post-tensioned design	16
	III.2.9 The adequate slope and thickness for the roof	16
	III.2.10 The small difference between the outer wall and floor thickness	17
	III.2.11 The capability of tunnel element to float with a safe freeboard	17
	III.3 Longitudinal Section	17
IV.	LOADING CONFIGURATIONS AND COMBINATIONS	20
	IV.1 General	20
	IV.2 Loadings in the Deepest Element	20
	IV.2.1 Permanent load cases	20
	IV.2.2 Variable load cases	23
	IV.2.3 Accidental or particular load cases	24
	IV.3 Basic Loading Values due to Combinations in the Deepest Element	25
	IV.3.1 Basic loading values	25
	IV.3.2 Combinations	26
	IV.4 Loadings for Other Elements	28
V.	REINFORCEMENT DESIGN BASED ON SKSNI AND NEN	31
	V.1 General	31
	V.2 Structure Idealization and Assumptions	31
	V.3 Loadings, Combinations and Stress Resultants	31
	V.4 Main Requirements for the Reinforcement Design	32
	V.5 SKSNI T15-1991-03 and NEN 6720 Codes	33
	V.6 Reinforcement Design Based on SKSNI T15-1991-03	34
	V.7 Reinforcement Design and Crack Width Control Based on NEN 6720	34
	V.8 Remarks for the Result	34
VI	. PHASES IN IMMERSED TUNNEL DESIGN	36
	VI.1 General	36
	VI.2 Phases	36

International Bachelor in Civil Engineering 2003 Faculteit Natuur en Techniek Planning University of Professional Education University Department of Civil Engineering Faculty of Civil Engineering and Petra Christian

	VI.2.1 Phase 1: Floo	oding the Dry Dock	36
	VI.2.2 Phase 2: Lift	ed up the Element	37
	VI.2.3 Phase 3: Rea	dy to be transported	38
	VI.2.4 Phase 4: Trai	nsport at sea	39
	VI.2.5 Phase 5: Rea	dy to be sunken	42
	VI.2.6 Phase 6: Sun	ken Phase	43
	VI.2.7 Phase 7: Enfe	orce to the temporary support	43
	VI.2.8 Phase 8: Mal	king of the soil foundation	44
	VI.2.9 Phase 9: Enfe	orce the next tunnel element	46
	VI.2.10 Phase 10: E	nd Situation	47
	VI.3 Phases for Reinforce	ement Design	47
	VI.4 Phases for Post-tens	ioned Design	47
VII.	POST-TENSIONED DES	SIGN	49
	VII.1 General		49
	VII.2 Loading Configurat	tions on Longitudinal Section	50
	VII.3 Design of the Post-	tensioned Configuration	53
	VII.4 Calculation for the	Total Loss	57
	VII.4.a Elastic Loss	in the Concrete	59
	VII.4.b Shrinkage		60
	VII.4.c Creep		61
	VII.4.d Relaxation		62
	VII.4.e Friction		63
	VII.4.f Slip	3	64
	VII.5 Result		65
	VII.6 Installation of the P	ost-tensioning System	66
	VII.7 Remarks		68
VIII.	EXPANSION JOINT		69
	VIII.1 General		69
	VIII.2 Principle of Provid	ling the Expansion Joint	69

International Bachelor in Civil Engineering 2003 Faculteit Natuur en Techniek Planning University of Professional Education University

Department of Civil Engineering Faculty of Civil Engineering and Petra Christian

VIII.2.1 The Sealin	ng System	69		
VIII.2.2 The Dilatation				
VIII.3 Problems Encountered in the Expansion Joint during				
the Tunnel Lifetim	ie	73		
IX. ELEMENT JOINT		74		
IX.1 General		74		
IX.2 The Main Parts of E	lement/Unit Joint	74		
IX.2.1 The GINA ga	isket	75		
IX.2.2 The IPE 500,	steel plate, and its bolts system	76		
IX.2.3 The Omega	Seal	77		
IX.3 The Supports that ha	ave roles due to the Compression of the Gina gasket	77		
IX.3.1 The Collar (a	le Kraag)	77		
IX.3.2 The Nose-Ch	nin Construction	78		
IX.4 Problems Encounter	ed in the Element/Unit Joint during			
the Tunnel Lifetime		79		
X. FINAL JOINT		80		
X.1 General		80		
X.2 Conventional Final J	oint	81		
X.2.1 Background		81		
X.2.2 Making the Co	nventional Final Joint	81		
X.3 New Final Joint		83		
X.3.1 Introduction		83		
X.3.2 Design of the M	New Final Joint	84		
X.3.3 Advantages of	the New Final Joint	87		
X.3.4 Disadvantages	of the New Final Joint	88		
X.3.5 Remarks		89		
XI. COST ESTIMATION		90		
XII. CONCLUSION		91		
REFERENCES		92		

Department of Civil Engineering Faculty of Civil Engineering and Petra Christian

International Bachelor in Civil Engineering 2003 Faculteit Natuur en Techniek Planning University of Professional Education University

APPENDICES

- APPENDIX 1: Section Properties
- APPENDIX 2: Calculation of Freeboard and Final Grain Pressure
- APPENDIX 3: The Reinforcement Calculation Based on SKSNI T-15-1991-03
- APPENDIX 4: The Reinforcement Calculation Worksheet
- APPENDIX 5: The Post-tensioned Design
- APPENDIX 6: The Nose-Chin Construction and the Collar Reinforcement
- APPENDIX 7: The Development Length of Longitudinal (Main) Reinforcement and Stirrups
- APPENDIX 8: The Moment Reinforcement Comparison between SKSNI and NEN
- APPENDIX 9: The Stress Resultant Distribution
- APPENDIX 10: Drawings

International Bachelor in Civil Engineering 2003 Faculteit Techniek en Natuur University of Professional Education

Department of Civil Engineering Faculty of Civil Engineering and Planning Petra Christian University

LIST OF SYMBOLS, ABBREVIATIONS AND DEFINITIONS USED

ß	wobble factor
γ'	effective density soil
γ _{bmax}	maximum density of ballast concrete
Ybmin	minimum density of ballast concrete
Ycmax	maximum density of reinforced concrete
Ycmin	minimum density of reinforced concrete
Yctmax	maximum density of concrete temporary wall
Yctmin	minimum density of concrete temporary wall
γ_{sat}	density of saturated soil
γı	density of water tank
γ_{wmin}	minimum density of sea water
γ _{wmax}	maximum density of sea water
δ	wedge setting
ε',	shortened caused by shrinkage
ε'c	basic shrinkage
ϵ'_{max}	maximum value for calculation of specific shortened due to shrinkage
$\boldsymbol{\epsilon}_{u}$	ultimate yield stress
λ	coefficient of neutral earth pressure
μ	friction
ρ_{min}	minimum moment reinforcement ratio
ρ_{max}	maximum moment reinforcement ratio
σ	force per area
σ'_{bo}	force of total cables per concrete area
$\sigma_{p,1000h}$	relaxation after 1000 hours
$\sigma_{p,n+\phi}$	losses due to shrinkage and creep
σ_{po}	strength after sudden losses
$\Delta\sigma'_{el}$	elastic loss
$\Delta \sigma_{p,rel}$	relaxation loss

International Bachelor in Civil Engineering 2003 Faculteit Techniek en Natuur University of Professional Education

Department of Civil Engineering Faculty of Civil Engineering and Planning Petra Christian University

- φ' effective internal angle friction of soil
- Ø creep coefficient
- Ømax maximum value for calculation of creep coefficient
- $\overline{\omega}_{o}$ percentage of the longitudinal reinforcement
- A section area
- B the minimum total area for ballast concrete
- c.t.c distance from center to center
- E'b elasticity modulus of concrete (= Ec), Dutch term
- Ec elasticity modulus of concrete (= E'b), American term
- E_p elasticity modulus of steel
- e eccentricity
- e_f eccentricity in the floor
- er eccentricity in the roof
- f'b cubical characteristic compression strength of concrete
- f'c cylindrical characteristic compression strength of concrete ($= f'_{ck}$), American term
- f'_{ck} cylindrical characteristic compression strength of concrete (= f'c), Dutch term
- fp ultimate tension stress of post-tensioned cable
- fy yield stress of reinforced steel
- H total area of the required hollow space
- h_m the height value of two times area divided by the perimeter of the concrete
- k_b factor dependent to f'_{ck}
- k_c factor dependent to relative humidity
- k_d factor dependent to the age of the concrete and strength class
- k_f kern in the floor
- k_h factor dependent to h_m
- k_p factor dependent to percentage of reinforcement
- kr kern in the roof
- k₁ factor dependent to the age of the concrete when post-tensioned
- L_d development length of stirrups
- M moment

Designing Immersed Tunnel Elements and Developing Its New Final Joint in the Flyland Project

International Bachelor in Civil Engineering 2003 Faculteit Techniek en Natuur University of Professional Education Department of Civil Engineering Faculty of Civil Engineering and Planning Petra Christian University

- M_{neg} negative moment (\cap)
- M_{pos} positive moment (U)
- N normal force / horizontal force
- N_{cables} number of cables
- P point load / force
- P_f point load in the floor
- Pr point load in the roof

Presultant resultant force / point load

- R_x rotation in x direction
- R_z rotation in z direction
- S the minimum total area for structural concrete
- U_Y translation in Y direction
- t thickness of a structure
- W_f modulus of inertia in the floor
- W_r modulus of inertia in the roof
- Z_f distance from the post-tensioned cables in the floor to the tunnel's center of gravity
- Z_r distance from the post-tensioned cables in the roof to the tunnel's center of gravity
- %Fa percentage of relaxation occurs after 1000 hours
- %Fpu percentage of stress happens on the cable

Element	a unit consists of several segments
HWL	High Water Level
LWL	Low Water Level
NAP	Normaal Amsterdams Peil/Amsterdam Ordnance Datum (AOD)
NEN	Dutch standard
Segment	a part of an element
SKSNI	Indonesia standard
SLS	Service Limit State
ULS	Ultimate Limit State

VDTZ Voorgedrukte Trek Zone