
 4. RESULT AND ANALYSIS 

 In  this  chapter,  the  IHDE-BPSO3  algorithm  is  employed  to  address  the  order  acceptance 

 and  parallel  machines  scheduling  problems.  An  experimental  design  is  conducted  to  evaluate 

 the  performance  of  the  IHDE-BPSO3  across  varying  problem  sizes  and  parameter  se�ngs.  The 

 experiments  in  this  paper  are  performed  on  a  computer  equipped  with  an  Intel  i9-9900  CPU 

 opera�ng  at  3.10GHz  and  16GB  of  memory.  The  execu�on  program  is  coded  in  C/C++  language 

 and  compiled  using  Visual  Studio  2022.  For  the  analysis,  Microso�  Excel  2021  is  used  to 

 interpret  calcula�ons,  assess  solu�on  �me,  and  evaluate  the  solu�on  quality  for  each  group  of 

 experimental factors. 

 4.1  Proposed IHDE-BPSO3 Structures 

 There  are  two  proposed  structures  for  the  IHDE-BPSO3  algorithm,  known  as 

 IHDE-BPSO3  type  1  and  type  2.  In  the  type  1  strategy,  a�er  each  muta�on  and  crossover 

 opera�on,  the  solu�on  undergoes  the  local  search  process.  As  for  the  type  2  strategy,  the 

 mutant  vector  does  not  undergo  the  local  search  process  before  the  crossover  opera�on, 

 instead,  it  directly  undergoes  the  crossover.  The  reason  for  developing  two  different  structures 

 is  that  type  2  has  a  similar  structure  to  the  original  IHDE-BPSO3,  and  the  aim  is  to  observe  the 

 performance between the two. 

 4.1.1  IHDE-BPSO3 Type 1 

 Figure 4.1 IHDE-BPSO3 Algorithm Type 1 Flowchart 
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 The detailed steps of IHDE-BPSO3 algorithm strategy 1 as follows: 

 1.  Se�ng  IHDE-BPSO3  algorithm  parameters  including  iner�a  weight  ,  weight  of ω

 personal  best  ,  weight  of  global  best  ,  random  numbers  and  ,  and  crossover  𝑐 
 1 

 𝑐 
 2 

 𝑟 
 1 

 𝑟 
 2 

 probability  .  𝑃 
 𝐶𝑅 

 2.  Generate  number  of  par�cles  and  encode  each  par�cle  using  permuta�on  coding  𝑁 
 𝑘 

 𝑘 

 in Sec�on 3.4.2 to produce: 

 ●  Ini�al posi�on  𝑋 
 𝑘𝑖𝑗 
 𝑡 ∈ { 𝑥 

 𝑘  11 
,  𝑥 

 𝑘  12 
,....,  𝑥 

 𝑘  1  𝑛 
,  𝑥 

 𝑘  22 
,....,  𝑥 

 𝑘  2  𝑛 
}

 ●  Ini�al mutant vector  𝑉 
 𝑘𝑖𝑗 
 𝑡 ∈ { 𝑣 

 𝑘  11 
,  𝑣 

 𝑘  12 
,....,  𝑣 

 𝑘  1  𝑛 
,  𝑣 

 𝑘  22 
,....,  𝑣 

 𝑘  2  𝑛 
}

 3.  Perform  Variable  Neighborhood  Search  (VNS)  method  as  described  in  Sec�on  3.4.3  to 

 improve the current solu�on. 

 a.  Use  the  order  inser�on  method  as  described  in  Sec�on  3.4.3  to  improve  the 

 current  solu�on,  .  If  the  solu�on  improves,  update  the  current  solu�on  to  𝑥  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  b.  If  the  current ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    +     1 ))   

 solu�on  x  does  not  improve,  con�nue  improving  it  un�l 

 �mes, and then go to  step b. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    +     1 ))

 b.  Use  the  machine  revised  method  as  described  in  Sec�on  3.4.3  to  improve  the 

 current  solu�on  .  If  the  solu�on  improves,  update  the  current  solu�on  to  𝑥  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  c.  If  the ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑀  _  𝑀𝑎𝑐ℎ𝑖𝑛𝑒    +     1 ))   

 current  solu�on  does  not  improve,  con�nue  improving  it  un�l  𝑥 

 �mes, and then go  to step c. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑀  _  𝑀𝑎𝑐ℎ𝑖𝑛𝑒    +     1 ))   

 c.  Use  the  order  swap  method  as  described  in  Sec�on  3.4.3  to  improve  the 

 current  solu�on  .  If  the  solu�on  improves,  update  the  current  solu�on  x  to  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  d.  If  the  current ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))

 solu�on  does  not  improve,  con�nue  improving  it  un�l  𝑥 

 �mes, and then go to  step d. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))

 d.  Use  the  machine  swap  method  as  described  in  sec�on  3.4.3  to  improve  the 

 current  solu�on  .  If  the  solu�on  improves,  update  the  current  solu�on  to  𝑥  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  e.  If  the  current ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))   
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 solu�on  does  not  improve,  con�nue  improving  it  un�l  𝑥 

 �mes, and then go to  step e. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))   

 e.  If improve  0, go back to step a. If improve =  0, proceed to step 4. ≠

 4.  Store the current solu�on  }. { 𝑋  ' 
 𝑘𝑖𝑗 
 𝑡 

 5.  Record p-best and g-best. 

 6.  Perform  muta�on  to  create  mutant  vector  using  the  muta�on  formula  as  𝑉 
 𝑘𝑖𝑗 
 𝑡 + 1 

 explained in Sec�on 3.4.4. 

 7.  Perform  Variable  Neighborhood  Search  (VNS)  method  as  described  in  Sec�on  3.4.3  to 

 improve the current solu�on. 

 8.  Store the current solu�on  . { 𝑉  ' 
 𝑘𝑖𝑗 
 𝑡 + 1 }

 9.  Perform  crossover  to  create  trial  vector  using  the  crossover  formula  as  explained  𝑈 
 𝑘𝑖𝑗 
 𝑡 + 1 

 in sec�on 3.4.4. 

 10.  Perform  Variable  Neighborhood  Search  (VNS)  method  as  described  in  Sec�on  3.4.3  to 

 improve the current solu�on. 

 11.  Store the current solu�on  . { 𝑈  ' 
 𝑘𝑖𝑗 
 𝑡 + 1 }

 12.  Merge  },  , and  , sort based on the objec�ve value. { 𝑋  ' 
 𝑘𝑖𝑗 
 𝑡 { 𝑉  ' 

 𝑘𝑖𝑗 
 𝑡 + 1 } { 𝑈  ' 

 𝑘𝑖𝑗 
 𝑡 + 1 }

 13.  Retain the best  solu�ons for the next genera�on.  𝑁 
 𝑘 
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 Figure 4.2 IHDE-BPSO3 Algorithm Type 1 Detailed Flowchart 

 4.1.2  IHDE-BPSO3 Type 2 

 Figure 4.3 IHDE-BPSO3 Algorithm Type 2 Flowchart 
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 The detailed steps of IHDE-BPSO3 algorithm strategy 2 as follows: 

 1.  Se�ng  IHDE-BPSO3  algorithm  parameters  including  iner�a  weight  ,  weight  of ω

 personal  best  ,  weight  of  global  best  ,  random  numbers  and  ,  and  crossover  𝑐 
 1 

 𝑐 
 2 

 𝑟 
 1 

 𝑟 
 2 

 probability  .  𝑃 
 𝐶𝑅 

 2.  Generate  number  of  par�cles  and  encode  each  par�cle  using  permuta�on  coding  𝑁 
 𝑘 

 𝑘 

 in Sec�on 3.4.2 to produce: 

 ●  Ini�al posi�on  𝑋 
 𝑘𝑖𝑗 
 𝑡 ∈ { 𝑥 

 𝑘  11 
,  𝑥 

 𝑘  12 
,....,  𝑥 

 𝑘  1  𝑛 
,  𝑥 

 𝑘  22 
,....,  𝑥 

 𝑘  2  𝑛 
}

 ●  Ini�al mutant vector  𝑉 
 𝑘𝑖𝑗 
 𝑡 ∈ { 𝑣 

 𝑘  11 
,  𝑣 

 𝑘  12 
,....,  𝑣 

 𝑘  1  𝑛 
,  𝑣 

 𝑘  22 
,....,  𝑣 

 𝑘  2  𝑛 
}

 3.  Perform  Variable  Neighborhood  Search  (VNS)  method  as  described  in  Sec�on  3.4.3  to 

 improve the current solu�on. 

 a.  Use  the  order  inser�on  method  as  described  in  Sec�on  3.4.3  to  improve  the 

 current  solu�on,  .  If  the  solu�on  improves,  update  the  current  solu�on  to  𝑥  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  b.  If  the  current ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    +     1 ))   

 solu�on  x  does  not  improve,  con�nue  improving  it  un�l 

 �mes, and then go to  step b. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    +     1 ))

 b.  Use  the  machine  revised  method  as  described  in  Sec�on  3.4.3  to  improve  the 

 current  solu�on  .  If  the  solu�on  improves,  update  the  current  solu�on  to  𝑥  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  c.  If  the ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑀  _  𝑀𝑎𝑐ℎ𝑖𝑛𝑒    +     1 ))   

 current  solu�on  does  not  improve,  con�nue  improving  it  un�l  𝑥 

 �mes, and then go  to step c. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑀  _  𝑀𝑎𝑐ℎ𝑖𝑛𝑒    +     1 ))   

 c.  Use  the  order  swap  method  as  described  in  Sec�on  3.4.3  to  improve  the 

 current  solu�on  .  If  the  solu�on  improves,  update  the  current  solu�on  x  to  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  d.  If  the  current ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))

 solu�on  does  not  improve,  con�nue  improving  it  un�l  𝑥 

 �mes, and then go to  step d. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))

 d.  Use  the  machine  swap  method  as  described  in  Sec�on  3.4.3  to  improve  the 

 current  solu�on  .  If  the  solu�on  improves,  update  the  current  solu�on  to  𝑥  𝑥 

 the  improved  solu�on  and  con�nue  improving  it  un�l  𝑥  ' 

 �mes.  Then,  proceed  to  step  e.  If  the  current ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))   
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 solu�on  does  not  improve,  con�nue  improving  it  un�l  𝑥 

 �mes, and then go to  step e. ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟     ×    ( 𝑁  _  𝑂𝑟𝑑𝑒𝑟    −     1 ))   

 e.  If improve  0, go back to step a. If improve =  0, proceed to step 4. ≠

 4.  Store the current solu�on  }. { 𝑋  ' 
 𝑘𝑖𝑗 
 𝑡 

 5.  Record p-best and g-best. 

 6.  Perform  muta�on  to  create  mutant  vector  using  the  muta�on  formula  as  𝑉 
 𝑘𝑖𝑗 
 𝑡 + 1 

 explained in Sec�on 3.4.4. Proceed to step 7 directly to do the crossover opera�on. 

 a.  Perform  Variable  Neighborhood  Search  (VNS)  method  as  described  in  Sec�on 

 3.4.3 to improve the current solu�on. 

 b.  Store the current solu�on  . { 𝑉  ' 
 𝑘𝑖𝑗 
 𝑡 + 1 }

 7.  Perform  crossover  to  create  trial  vector  using  the  crossover  formula  as  explained  𝑈 
 𝑘𝑖𝑗 
 𝑡 + 1 

 in Sec�on 3.4.4. 

 8.  Perform  Variable  Neighborhood  Search  (VNS)  method  as  described  in  Sec�on  3.4.3  to 

 improve the current solu�on. 

 9.  Store the current solu�on  . { 𝑈  ' 
 𝑘𝑖𝑗 
 𝑡 + 1 }

 10.  Merge  },  , and  , sort based on the objec�ve value. { 𝑋  ' 
 𝑘𝑖𝑗 
 𝑡 { 𝑉  ' 

 𝑘𝑖𝑗 
 𝑡 + 1 } { 𝑈  ' 

 𝑘𝑖𝑗 
 𝑡 + 1 }

 11.  Retain the best  solu�ons for the next genera�on.  𝑁 
 𝑘 
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 Figure 4.4 IHDE-BPSO3 Algorithm Type 2 Detailed Flowchart 

 4.2  Problem Parameters 

 The  order  acceptance  and  scheduling  problem  in  this  paper  is  set  as  follows:  when  the 

 order  quan�ty  is  ,  the  number  of  machines  is  .  Otherwise,  𝐼    =    { 10 ,     11 ,     12 }  𝑀    =    { 1 ,  2 ,  3 }

 when  the  order  quan�ty  is  ,  the  number  of  machines  is  𝐼    =    { 30 ,     50 ,     100 ,     150 ,     200 }

 .  The  number  of  par�cles  were  set  to  .  The  problem  parameters  are  𝑀    =    { 3 ,  6 ,  9 }  𝑁 
 𝑘 

=  10 

 generated using a uniform distribu�on with the upper bound and lower bound as follows: 

 1.  Revenue of order  =  .  𝑖 ( 𝑟 
 𝑖 
)  𝑈 ( 100 ,  200 )

 2.  Penalty weight of delayed order  =  .  𝑖 ( 𝑤 
 𝑖 
)  𝑈 ( 2 ,  10 )

 3.  Processing �me of order  =  .  𝑖 ( 𝑝 
 𝑖 
)  𝑈 ( 5 ,  20 )

 4.  Set up �me of order  at the beginning  =  .  𝑖 ( 𝑠 
 0  𝑖 

)  𝑈 ( 2 ,  8 )

 5.  Set up �me of order  a�er order  =  .  𝑗  𝑖 ( 𝑠 
 𝑖𝑗 

)  𝑈 ( 2 ,  8 )

 6.  Due date of order  =  .  𝑖 ( 𝑑 
 𝑖 
)  𝑈 ( 15 ,  60 )
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 4.3  IHDE-BPSO3 Parameter Tuning 

 The  IHDE-BPSO3  parameters  that  needed  to  be  set  include:  iner�a  weight  ,  weight  of ω

 personal  best  ,  weight  of  global  best  ,  random  numbers  and  ,  and  crossover  𝑐 
 1 

 𝑐 
 2 

 𝑟 
 1 

 𝑟 
 2 

 probability  .  The  iner�a  weight  controls  the  balance  between  explora�on  and  𝑃 
 𝐶𝑅 

ω

 exploita�on,  while  and  indicate  the  influence  of  p-best  and  g-best,  respec�vely.  The  𝑐 
 1 

 𝑐 
 2 

 crossover  probability  determines  the  selec�on  between  the  mutant  vector  and  the  parent  𝑃 
 𝐶𝑅 

 vector  to  create  the  trial  vector.  Two  different  strategies  are  employed  and  the  results  are  then 

 compared. 

 4.3.1  This Study’s Strategy 

 This  study  tested  the  original  parameter  se�ngs  for  IHDE-BPSO3,  as  per  Wu  (2023), 

 based  on  Equa�ons  (2.18),  (2.19),  and  (2.20),  where  the  values  of,  c1,  and  c2  change  with  each 

 itera�on.  According  to  Wu  (2023),  the  crossover  probability  is  set  to  0.5.  Three  replica�ons  𝑃 
 𝐶𝑅 

 are  carried  out,  and  the  mean  error  of  the  objec�ve  values  is  averaged.  To  apply  these 

 equa�ons, the maximum itera�ons for each problem are set as follows: 

 Table 4.1 

 Max Itera�ons Se�ng for This Study’s Strategy 

 No.  No. of Orders  Max Itera�ons 

 1  10  25000 

 2  11  25000 

 3  12  25000 

 4  30  1500 

 5  50  400 

 6  100  100 

 7  150  35 

 8  200  15 

 4.3.2  Chen’s Strategy 

 Chen  (2013)  developed  a  parameter  se�ng  strategy  for  his  proposed  PSO-VNS 

 algorithm.  According  to  the  strategy,  if  the  personal  best  (p-best)  and  global  best  (g-best) 
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 values  remain  unchanged  for  a  specific  number  of  itera�ons,  the  iner�a  weight  is  reduced  by ω

 0.01.  Addi�onally,  the  weight  of  the  personal  best  component  is  increased  by  0.01,  and  the  𝑐 
 1 

 weight  of  the  global  best  component  is  also  increased  by  0.01.  Ini�ally,  he  set  the  𝑐 
 2 

 parameters as shown in Table 4.2 below. 

 Table 4.2 

 Ini�al Parameters Se�ng for Chen’s Strategy 

 Parameters  Value 

 Iner�a Weight (ω)  0 .  2 

 Weight of P-best ( 𝑐 
 1 
)  0 .  8 

 Weight of G-best ( 𝑐 
 2 
)  0 .  8 

 Random Numbers ( 𝑟 
 1 
 &     𝑟 

 2 
)    𝑈 ( 0 ,  1 )

 To  op�mize  the  algorithm's  performance,  parameter  tes�ng  is  conducted  using  specific 

 problem  instances,  where  the  number  of  orders  is  represented  as  ,  and  𝐼    =    { 30 ,     50 ,     100 }

 the  number  of  machines  is  denoted  as  .  The  objec�ve  values  from  three  𝑀    =    { 3 ,  6 ,}

 replica�ons  are  averaged.  A�er  that,  the  highest  objec�ve  value  is  obtained  and  the  differences 

 between  this  highest  value  and  the  lower  ones  are  calculated  using  Equa�on  3.16  to  obtain  the 

 percentage  error.  Subsequently,  the  percentage  errors  are  totaled,  the  parameter  that  yields 

 the smallest total percentage error is considered the best. 

 For  tes�ng,  the  ini�al  parameters  are  set  iden�cally  to  Chen's,  as  outlined  in  Table  4.2 

 and  the  crossover  probability  is  set  to  0.5.  The  tes�ng  begins  by  varying  the  number  of  𝑃 
 𝐶𝑅 

 itera�ons  to  determine  the  best  value  at  which  the  condi�ons  men�oned  in  the  previous 

 sec�on  are  sa�sfied.  Following  that,  the  iner�a  weight  value  is  also  adjusted  to  find  the  best 

 ini�al  iner�a  weight  for  the  algorithm.  Finally,  the  crossover  probability  is  adjusted  to  iden�fy 

 the op�mal selec�on probability to create the trial vector. 

 4.3.2.1  IHDE-BPSO3 Type 1 Parameter Tes�ng 

 a.  Change Number of Itera�ons 
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 Tes�ng  begins  by  varying  number  of  itera�ons,  ,  from  𝑖  𝑖    = { 10 ,  20 ,  30 ,  40 ,  50 }

 itera�ons. The result can be seen in Table 4.3 below. 

 Table 4.3 

 Percentage Error when Varying Number of Itera�ons for IHDE-BPSO3 Type 1 

 Orders  Machines 
 % Error 

 > 50 iter  > 40 iter  > 30 iter  > 20 iter  > 10 iter 

 30  3  0.026%  0.000%  0.000%  0.026%  0.000% 

 30  6  0.240%  0.383%  0.000%  0.176%  0.054% 

 50  3  0.066%  0.194%  0.258%  0.000%  0.107% 

 50  6  0.117%  0.090%  0.005%  0.104%  0.000% 

 100  3  0.065%  0.065%  0.065%  0.065%  0.000% 

 100  6  0.065%  0.065%  0.065%  0.065%  0.000% 

 Total % Error  0.580%  0.798%  0.394%  0.437%  0.161% 

 From  Table  4.3  above,  it  can  be  seen  that  the  number  of  itera�ons  10  yields  the 

 smallest  total  percentage  error.  This  result  indicates  that  the  condi�on  described  in 

 Sec�on  4.3.2  is  most  suitable  when  applied  on  10  itera�ons.  Therefore,  the  number  of 

 itera�ons is fixed to 10. 

 b.  Change Ini�al Iner�a Weight  Value (ω)

 For  the  ini�al  iner�a  weight,  the  value  is  varied  from  .  The ω = { 0 .  2 ;     0 .  5 ;     0 .  8 ;     1 .  1 }

 result can be seen in Table 4.4 below. 

 Table 4.4 

 Percentage Error when Varying Ini�al Iner�a Weight for IHDE-BPSO3 Type 1 

 Orders  Machines 
 % Error 

 0.2  0.5  0.8  1.1 

 30  3  0.000%  0.000%  0.000%  0.000% 

 30  6  0.014%  0.185%  0.027%  0.000% 

 50  3  0.226%  0.249%  0.000%  0.101% 

 50  6  0.092%  0.366%  0.033%  0.000% 

 100  3  0.115%  0.154%  0.000%  0.165% 

 100  6  0.478%  0.227%  0.513%  0.000% 

 Total % Error  0.925%  1.181%  0.573%  0.267% 
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 Based  on  the  Table  4.4,  it  can  be  seen  that  the  ini�al  iner�a  weight  of  1.1  results  in  the 

 smallest total percentage error. Consequently, the ini�al iner�a weight is set to 1.1. 

 c.  Change Crossover Probability  Value ( 𝑃 
 𝐶𝑅 

)

 The  crossover  probability  defines  the  selec�on  propor�on  for  the  parent  vector  and 

 the  mutant  vector  to  generate  the  trial  vector.  Therefore,  the  value  is  varied  within 

 . The results can be seen  in Table 4.5 below.  𝑃 
 𝐶𝑅 

= { 0 .  2 ;     0 .  5 ;     0 .  8 }

 Table 4.5 

 Percentage Error when Varying Crossover Probability for IHDE-BPSO3 Type 1 

 Orders  Machines 
 % Error 

 0.2  0.5  0.8 

 30  3  0.026%  0.000%  0.026% 

 30  6  0.000%  0.016%  0.054% 

 50  3  0.226%  0.000%  0.116% 

 50  6  0.444%  0.000%  0.274% 

 100  3  0.145%  0.000%  0.086% 

 100  6  0.631%  0.000%  0.228% 

 Total % Error  1.472%  0.016%  0.785% 

 From  Table  4.5,  it  can  be  seen  that  the  best  value  for  the  crossover  probability  is  0.5. 

 Therefore, the crossover probability is set to 0.5. 

 4.3.2.2  IHDE-BPSO3 Type 2 Parameter Tes�ng 

 Same as type 1, parameter tes�ng is also conducted for the IHDE-BPSO3 type 2. 

 a.  Change Number of Itera�ons 

 In  this  part,  The  number  of  itera�ons  is  adjusted  within  𝑖    = { 10 ,  20 ,  30 ,  40 ,  50 }

 itera�ons. The results are presented in Table 4.5 below. 
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 Table 4.6 

 Percentage Error when Varying Number of Itera�ons for IHDE-BPSO3 Type 2 

 Orders  Machines 
 % Error 

 > 50 iter  > 40 iter  > 30 iter  > 20 iter  > 10 iter 

 30  3  0.026%  0.000%  0.026%  0.026%  0.000% 

 30  6  0.000%  0.123%  0.051%  0.155%  0.073% 

 50  3  0.052%  0.262%  0.315%  0.149%  0.000% 

 50  6  0.132%  0.115%  0.114%  0.000%  0.332% 

 100  3  0.000%  0.000%  0.000%  0.000%  0.138% 

 100  6  0.000%  0.000%  0.000%  0.000%  0.008% 

 Total % Error  0.211%  0.500%  0.507%  0.330%  0.551% 

 From  Table  4.6,  it  can  be  seen  that  employing  50  itera�ons  is  the  most  suitable  when 

 applying  the  special  condi�ons  outlined  in  Sec�on  4.3.1  for  the  IHDE-BPSO3  type  2. 

 Thus, the number of itera�ons is fixed to 50. 

 b.  Change Ini�al Iner�a Weight  Value (ω)

 The  iner�a  weight  value  is  varied  within  .  The  result  can  be ω = { 0 .  2 ;     0 .  5 ;     0 .  8 ;     1 .  1 }

 seen in Table 4.6 below. 

 Table 4.7 

 Percentage Error when Varying Ini�al Iner�a Weight for IHDE-BPSO3 Type 2 

 Orders  Machines 
 % Error 

 0.2  0.5  0.8  1.1 

 30  3  0.026%  0.000%  0.000%  0.000% 

 30  6  0.165%  0.299%  0.138%  0.000% 

 50  3  0.000%  0.210%  0.094%  0.132% 

 50  6  0.262%  0.127%  0.357%  0.000% 

 100  3  0.342%  0.179%  0.000%  0.400% 

 100  6  0.190%  0.000%  0.219%  0.049% 

 Total % Error  0.986%  0.814%  0.807%  0.581% 

 Based  on  Table  4.7,  it  is  shown  that  an  ini�al  iner�a  weight  of  1.1  yields  the  smallest 

 total percentage error. As a result, the ini�al iner�a weight is set at 1.1. 
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 c.  Change Crossover Probability  Value ( 𝑃 
 𝐶𝑅 

)

 The  crossover  probability  value  is  varied  within  .  The  results  𝑃 
 𝐶𝑅 

= { 0 .  2 ;     0 .  5 ;     0 .  8 }

 can be seen in Table 4.8 below. 

 Table 4.8 

 Percentage Error when Varying Crossover Probability for IHDE-BPSO3 Type 2 

 Orders  Machines 
 % Error 

 0.2  0.5  0.8 

 30  3  0.000%  0.000%  0.000% 

 30  6  0.035%  0.000%  0.124% 

 50  3  0.000%  0.079%  0.149% 

 50  6  0.158%  0.096%  0.000% 

 100  3  0.000%  0.269%  0.041% 

 100  6  0.000%  0.176%  0.189% 

 Total % Error  0.193%  0.620%  0.503% 

 Table  4.8  indicates  that  the  best  crossover  probability  value  is  0.2.  This  is  reasonable 

 since  the  mutant  vector  selected  in  the  crossover  opera�on  for  the  IHDE-BPSO3  type  2 

 did  not  undergo  the  local  search  process  beforehand.  Hence,  the  result  might  not  be 

 good. Thus, the crossover probability for IHDE-BPSO3 type 2 is set to 0.2. 

 4.3.3  Parameters Comparison 

 Two  parameter  strategies  are  compared  to  find  out  the  suitable  parameter  se�ng  for 

 IHDE-BPSO3  in  this  study.  For  comparison,  two  parameter  se�ngs  are  tested  in  mid  to  large 

 problems  with  three  replica�ons.  To  compare  it  fairly,  there  are  two  termina�on  condi�ons 

 that  are  tried.  The  first  termina�on  condi�on  is  when  the  �me  reached  60  seconds,  the 

 program  will  stop.  The  second  condi�on  is  using  maximum  itera�ons.  The  mean  errors  are 

 averaged and the one with the smallest total mean error is chosen. 

 4.3.3.1  Comparison Based on Termina�on Time 

 In  this  sec�on,  two  parameter  se�ngs  for  both  types  of  IHDE-BPSO3  are  compared 

 with  a  termina�on  �me  set  to  60  seconds  as  the  stopping  criteria.  The  results  can  be  seen  in 

 the table below. 
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 Table 4.9 

 Parameter Se�ngs Comparison for IHDE-BPSO3 Type 1 Based on Termina�on Time 

 Case 
 IHDE-BPSO Type 1  Mean Error 

 Orders  Machines  Chen (2013)  This Study (2023) 

 1  30  3  0.000%  0.000% 

 2  30  6  0.000%  0.047% 

 3  30  9  0.021%  0.000% 

 4  50  3  0.000%  0.206% 

 5  50  6  0.117%  0.182% 

 6  50  9  0.143%  0.125% 

 7  100  3  0.415%  0.000% 

 8  100  6  0.000%  0.296% 

 9  100  9  0.030%  0.211% 

 10  150  3  0.000%  0.633% 

 11  150  6  0.149%  0.022% 

 12  150  9  0.000%  0.260% 

 13  200  3  0.204%  0.355% 

 14  200  6  0.101%  0.037% 

 15  200  9  0.026%  0.126% 

 Total Mean Error  1.206%  2.501% 

 Based on Table 4.9, it is shown that Chen’s parameter strategy is be�er than the 

 current strategy, with a total mean error of 1.206% for IHDE-BPSO3 type 1. 
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 Table 4.10 

 Parameter Se�ngs Comparison for IHDE-BPSO3 Type 2 Based on Termina�on Time 

 Case 
 IHDE-BPSO3 Type 2  Mean Error 

 Orders  Machines  Chen (2013)  This Study (2023) 

 1  30  3  0.000%  0.000% 

 2  30  6  0.049%  0.034% 

 3  30  9  0.000%  0.021% 

 4  50  3  0.126%  0.133% 

 5  50  6  0.181%  0.000% 

 6  50  9  0.097%  0.100% 

 7  100  3  0.175%  0.000% 

 8  100  6  0.000%  0.283% 

 9  100  9  0.171%  0.199% 

 10  150  3  0.498%  0.428% 

 11  150  6  0.401%  0.041% 

 12  150  9  0.022%  0.087% 

 13  200  3  0.156%  0.167% 

 14  200  6  0.055%  0.099% 

 15  200  9  0.000%  0.376% 

 Total Mean Error  1.929%  1.968% 

 For IHDE-BPSO3 type 2, Chen’s parameter strategy is also be�er than the current 

 strategy, with a total mean error of 1.929%. 

 4.3.3.2  Comparison Based on Maximum Itera�ons 

 In  this  sec�on,  the  comparison  of  two  parameter  se�ngs  for  both  types  of  IHDE-BPSO3 

 uses  the  maximum  itera�ons  as  the  termina�on  criteria.  The  results  are  displayed  in  the  table 

 below. 
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 Table 4.11 

 Parameter Se�ngs Comparison for IHDE-BPSO3 Type 1 Based on Maximum Itera�ons 

 Case 
 IHDE BPSO TYPE 1  Mean Error 

 Orders  Machines  Chen (2013)  This Study (2023) 

 1  30  3  0.000%  0.000% 

 2  30  6  0.000%  0.030% 

 3  30  9  0.000%  0.000% 

 4  50  3  0.000%  0.206% 

 5  50  6  0.117%  0.182% 

 6  50  9  0.151%  0.055% 

 7  100  3  0.274%  0.000% 

 8  100  6  0.000%  0.418% 

 9  100  9  0.064%  0.077% 

 10  150  3  0.041%  0.355% 

 11  150  6  0.101%  0.000% 

 12  150  9  0.016%  0.044% 

 13  200  3  0.284%  0.000% 

 14  200  6  0.028%  0.188% 

 15  200  9  0.000%  0.173% 

 Total Mean Error  1.076%  1.728% 

 As  shown  in  Table  4.11,  Chen’s  parameter  is  be�er  than  current  strategy  for  the 

 IHDE-BPSO type 1 with a total mean error of 1.076%. 
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 Table 4.12 

 Parameter Se�ngs Comparison for IHDE-BPSO3 Type 2 Based on Maximum Itera�ons 

 Case 
 IHDE-BPSO3 Type 2  Mean Error 

 Orders  Machines  Chen (2013)  This Study (2023) 

 1  30  3  0.000%  0.000% 

 2  30  6  0.049%  0.069% 

 3  30  9  0.000%  0.000% 

 4  50  3  0.126%  0.133% 

 5  50  6  0.166%  0.000% 

 6  50  9  0.170%  0.087% 

 7  100  3  0.175%  0.000% 

 8  100  6  0.000%  0.364% 

 9  100  9  0.000%  0.328% 

 10  150  3  0.224%  0.428% 

 11  150  6  0.232%  0.052% 

 12  150  9  0.037%  0.132% 

 13  200  3  0.190%  0.300% 

 14  200  6  0.026%  0.064% 

 15  200  9  0.000%  0.356% 

 Total Mean Error  1.396%  2.312% 

 As  seen  in  Table  4.12,  Chen’s  parameter  is  also  be�er  than  the  current  strategy  for  the 

 IHDE-BPSO3  type  2  with  a  total  mean  error  of  1.076%.  A�er  comparing  using  two  different 

 termina�on  criteria,  Chen's  parameters  outperform  current  strategy  in  both  types  of 

 IHDE-BPSO3. Therefore, Chen's parameter strategy is used for the final tes�ng. 

 4.4  Computa�onal Experiments 

 To  evaluate  the  algorithm's  performance,  experiments  were  conducted.  Cases  1-9 

 represent  the  small-sized  problems,  while  cases  10-24  represent  the  mid  to  large  problems. 

 The experimental factors can be seen in Table 4.13 below. 
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 Table 4.13 

 Experimental Factors 

 Case  1  2  3  4  5  6  7  8  9  10  11  12 

 Orders  10  10  10  11  11  11  12  12  12  30  30  30 

 Machines  1  2  3  1  2  3  1  2  3  3  6  9 

 Case  13  14  15  16  17  18  19  20  21  22  23  24 

 Orders  50  50  50  100  100  100  150  150  150  200  200  200 

 Machines  3  6  9  3  6  9  3  6  9  3  6  9 

 4.5  Comparison of Two Proposed IHDE-BPSO3s 

 For  the  comparison  part,  the  parameter  se�ngs  for  IHDEBPSO3  types  1  and  2  can  be 

 seen  in  Table  4.14  below.  These  se�ngs  are  based  on  the  parameter  tes�ng  results  from  the 

 previous sec�ons. 

 Table 4.14 

 IHDE-BPSO3 Parameters Se�ng 

 Parameter  IHDE-BPSO3 Type 1  IHDE-BPSO3 Type 2 

 Number of Itera�ons  > 10 itera�ons  > 50 itera�ons 

 Ini�al Iner�a Weight (ω)  1.1  1.1 

 ,  𝑐 
 1 

 𝑐 
 2 

 0.8, 0.8  0.8, 0.8 

 ,  𝑟 
 1 

 𝑟 
 2 

 𝑈 ( 0 ,  1 ),  𝑈 ( 0 ,  1 ),     𝑈 ( 0 ,  1 ),  𝑈 ( 0 ,  1 ),    

 Crossover Probability ( 𝑃 
 𝐶𝑅 

)  0.5  0.2 

 The  algorithms  are  then  compared  using  the  experimental  factors  from  Sec�on  4.4.  Ten 

 replica�ons  are  conducted,  with  the  termina�on  �me  is  set  to  60  seconds.  The  differences  in 

 the  objec�ve  values  for  each  replica�on  are  calculated  using  Equa�on  3.16.  Subsequently,  the 

 percentage errors are averaged, and the result can be represented as the mean error. 
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 Table 4.15 

 Mean Error of Two Proposed IHDE-BPSO3s for the Small Problems 

 Case  Orders  Machines 
 Mean Error 

 IHDE-BPSO3 Type 1  IHDE-BPSO3 Type 2 

 1  10  1  0.000%  0.000% 

 2  10  2  0.000%  0.000% 

 3  10  3  0.000%  0.000% 

 4  11  1  0.000%  0.000% 

 5  11  2  0.000%  0.000% 

 6  11  3  0.000%  0.000% 

 7  12  1  0.000%  0.000% 

 8  12  2  0.000%  0.000% 

 9  12  3  0.000%  0.000% 

 For  the  small-sized  problems,  it  can  be  observed  that  the  mean  error  of  both 

 algorithms  is  0%.  This  indicates  that  both  algorithms  perform  well  in  small-sized  problems  and 

 reach the op�mal solu�ons. 

 Figure 4.5 Line Chart of Average Compu�ng Time for Two IHDEBPSO3s 

 Based  on  the  average  compu�ng  �me  required  to  reach  the  op�mal  solu�on  for  the 

 small  problems  with  ten  replica�ons,  Figure  4.5  shows  that  overall,  type  1  requires  shorter  �me 
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 than  type  2  to  reach  the  op�mal  solu�on.  This  means  that  type  1  converges  faster  towards  the 

 op�mal solu�on than type 2. 

 Table 4.16 

 Mean Error of Two Proposed IHDE-BPSO3s for Mid to Large Problems 

 Case  Orders  Machines 
 Mean Error 

 IHDE-BPSO3 Type 1  IHDE-BPSO3 Type 2 

 10  30  3  0.000%  0.000% 

 11  30  6  0.037%  0.075% 

 12  30  9  0.013%  0.001% 

 13  50  3  0.061%  0.072% 

 14  50  6  0.067%  0.166% 

 15  50  9  0.052%  0.086% 

 16  100  3  0.174%  0.145% 

 17  100  6  0.110%  0.051% 

 18  100  9  0.072%  0.143% 

 19  150  3  0.300%  0.216% 

 20  150  6  0.041%  0.219% 

 21  150  9  0.115%  0.047% 

 22  200  3  0.134%  0.230% 

 23  200  6  0.237%  0.061% 

 24  200  9  0.036%  0.145% 

 Total Mean Error  1.449%  1.657% 

 Table  4.16  presents  the  mean  errors  for  IHDE-BPSO3  type  1  and  type  2  across  various 

 problem  sizes  and  machine  configura�ons.  In  the  case  of  30  orders,  both  types  have  a  0.000% 

 mean  error  with  a  3-machine  configura�on.  However,  as  the  number  of  machines  increases, 

 both  types  experience  an  increment  in  mean  errors  when  the  number  of  machines  is  6, 

 followed  by  a  decrease  when  the  number  of  machines  is  9.  For  the  50  orders  scenario,  type  1 

 consistently  outperforms  type  2  across  all  machine  configura�ons,  indica�ng  that  type  1  is 

 more suitable for this size of problems. 

 Scaling  up  to  the  larger  problem  size,  in  the  case  of  100  orders,  both  algorithms  display 

 higher  error  percentages.  Type  2  outperforms  type  1  in  3  and  6  machine  configura�ons, 
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 indica�ng  its  be�er  adaptability  to  larger  problem  sizes.  The  150  orders  problem  introduces 

 more  variability,  with  type  1  shows  a  notable  increase,  par�cularly  for  the  3-machine 

 configura�on  where  the  mean  error  reaches  0.3%,  while  type  2  outperforms  type  1  in  3  and  9 

 machine  configura�ons.  As  for  the  200  orders  scenario,  type  1  demonstrates  compe��ve 

 performance,  especially  for  the  3-machine  and  9-machine  configura�ons,  while  type  2  shows 

 an increase in the mean errors. 

 In  summary,  IHDE-BPSO3  type  1  outperforms  type  2  in  mid-sized  problems,  while  type 

 2  outperforms  type  1  several  �mes  in  large-sized  problems.  Based  on  the  results,  it  can  be 

 concluded  that  type  1  is  more  suitable  for  mid-sized  problems,  while  type  2  is  more  suitable  for 

 large-sized problems. 

 Figure 4.6 Line Chart of Tes�ng Mean Error for Two IHDEBPSO3s 

 Figure  4.6  illustrates  the  performance  of  each  type  of  IHDE-BPSO3  algorithms.  For  the 

 small  problem  where  the  number  of  orders  is  and  the  number  of  machines  𝐼    =    { 10 ,     11 ,     12 }

 is  ,  both  algorithms  can  achieve  the  op�mal  solu�on  with  the  mean  error  value  𝑀 = { 1 ,     2 ,     3 }

 of  0.000%.  However,  when  the  number  of  orders  is  increased  to  𝐼    =    { 30 ,     50 ,     100 ,  150 ,  200 }

 ,  and  the  number  of  machines  is  ,  the  algorithms  are  unable  to  find  the  op�mal  𝑀 = { 3 ,     6 ,     9 }

 solu�on, and the mean error starts to increase irregularly. 

 Hence,  when  the  mean  errors  are  totaled,  the  IHDE=BPSO3  type  1  yields  a  smaller  total 

 mean  error  with  a  value  of  1.449%  than  the  type  2  (1.657%).  Thus,  it  can  be  concluded  that  the 

 IHDE-BPSO3  type  1  slightly  be�er  than  the  type  2.  For  some  cases,  this  might  happen  because 

 the  effect  of  the  crossover  solu�ons  generated  by  IHDE-BPSO3  type  2  may  not  be  good  due  to 

 46 
 Petra Chris�an University 



 the  absence  of  the  local  search  process  for  the  mutant  vector.  Even  though  the  crossover 

 probability  for  type  2  has  been  set  to  0.2,  there  is  s�ll  a  chance  that  the  mutant  vector  will  be 

 selected  to  be  the  trial  vector.  As  a  result,  the  algorithm  might  encounter  difficulty  in 

 genera�ng good popula�ons, resul�ng in difficul�es converging towards the op�mal result. 

 4.6  Comparison with PSO-VNS Algorithm 

 The  IHDE-BPSO3  type  1  are  then  compared  with  the  well  developed  classic  algorithm, 

 Par�cle  Swarm  Op�miza�on  (PSO)  embedded  with  the  Variable  Neighborhood  Search  (VNS). 

 Ten  replica�ons  were  tested  to  obtain  the  mean  error  of  two  algorithms.  The  termina�on  �me 

 is set to 60 seconds. 

 Table 4.17 

 Mean Error of two Algorithms for Small Problems 

 Case  Orders  Machines 
 Mean Error 

 IHDE-BPSO3 Type 1  PSO-VNS 

 1  10  1  0.000%  0.000% 

 2  10  2  0.000%  0.000% 

 3  10  3  0.000%  0.000% 

 4  11  1  0.000%  0.000% 

 5  11  2  0.000%  0.000% 

 6  11  3  0.000%  0.000% 

 7  12  1  0.000%  0.000% 

 8  12  2  0.000%  0.000% 

 9  12  3  0.000%  0.000% 

 For  the  small  problems,  both  algorithms  yield  a  0.000%  of  mean  error.  This  means  both 

 of the algorithms can reach the op�mal solu�ons for the small problems. 

 47 
 Petra Chris�an University 



 Figure 4.7 Line Chart of Average Compu�ng Time for Two Algorithms 

 Based  on  the  average  compu�ng  �me  required  to  reach  the  op�mal  solu�on  for 

 small-sized  problems  with  ten  replica�ons,  Figure  4.7  shows  that  overall,  PSO-VNS  requires  less 

 �me  than  IHDE-BPSO3  Type  1  to  reach  the  op�mal  solu�on.  However  in  some  cases,  as  the 

 number of orders increases, PSO-VNS could take more �me to reach the op�mal solu�ons. 
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 Table 4.18 

 Mean Error of Two Algorithms for Mid to Large Problems 

 Case  Orders  Machines 
 Mean Error 

 IHDE-BPSO3 Type 1  PSO-VNS 

 10  30  3  0.000%  0.000% 

 11  30  6  0.048%  0.031% 

 12  30  9  0.015%  0.000% 

 13  50  3  0.056%  0.087% 

 14  50  6  0.190%  0.062% 

 15  50  9  0.184%  0.016% 

 16  100  3  0.283%  0.209% 

 17  100  6  0.229%  0.175% 

 18  100  9  0.167%  0.079% 

 19  150  3  0.214%  0.243% 

 20  150  6  0.072%  0.159% 

 21  150  9  0.129%  0.113% 

 22  200  3  0.270%  0.162% 

 23  200  6  0.398%  0.045% 

 24  200  9  0.159%  0.113% 

 Total Mean Error  2.413%  1.495% 

 When  tested  on  mid  to  large  problems,  it  is  shown  that  the  mean  error  for  both 

 algorithms  increases  with  the  growing  number  of  orders  and  machines.  PSO-VNS  outperforms 

 IHDE-BPSO3 type 1 as the number of orders and machines ge�ng larger. 
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 Figure 4.8 Line Chart of Tes�ng Mean Error for Two Algorithms 

 Figure  4.8  shows  the  performance  of  two  algorithms.  For  small  problems,  both 

 IHDE-BPSO3  type  1  and  PSO-VNS  can  achieve  the  op�mal  solu�on  with  a  mean  error  value  of 

 0.000%.  However,  as  the  number  of  orders  and  machines  increases,  the  mean  error  starts  to 

 rise.  This  is  because  the  algorithms  are  unable  to  find  the  op�mal  solu�on  due  to  the 

 compu�ng �me for each itera�on increases as the problem size grows. 

 When  the  mean  errors  are  totaled,  IHDE-BPSO3  type  1  yields  a  larger  total  mean  error 

 with  a  value  of  2.413%  compared  to  PSO-VNS  (1.495%).  Thus,  it  can  be  concluded  that 

 PSO-VNS  slightly  outperforms  IHDE-BPSO3  type  1.  This  is  make  sense  since  the  IHDE-BPSO3 

 takes  more  �me  to  compute.  The  inclusion  of  muta�on,  crossover,  three  �mes  of  local  search 

 and  selec�on  from  three  different  popula�ons  in  one  itera�on  increases  the  �me  of  each 

 itera�on. 

 50 
 Petra Chris�an University 



 Figure 4.9 Line Chart of Average Itera�ons to Reach Op�mal Solu�ons for Two Algorithms 

 In  Figure  4.9,  it  is  shown  that  IHDE-BPSO3  requires  fewer  itera�ons  to  reach  its  op�mal 

 solu�on  compared  to  PSO-VNS.  However,  when  tes�ng  IHDE-BPSO3  with  a  problem-solving 

 �me  of  60  seconds  for  mid  to  large-sized  problems,  the  algorithm  resulted  in  fewer  itera�ons. 

 Hence,  the  algorithm  is  unable  to  reach  more  itera�ons  to  converge  towards  a  be�er  solu�on. 

 Nevertheless,  the  largest  gap  between  IHDE-BPSO3  solu�ons  in  large-sized  problems  was  only 

 0.398%.  For  a  newly  introduced  algorithm,  this  difference  wasn't  substan�al.  By  integra�ng 

 muta�on  and  crossover  opera�ons  for  genera�ng  new  popula�ons  to  increase  the  diversity, 

 employing  selec�on  to  obtain  the  best  popoula�on  for  next  genera�ons,  and  incorpora�ng  the 

 memory  concept  from  par�cle  swarm  op�miza�on,  IHDE-BPSO3  demonstrates  improved 

 effec�veness in global explora�on as it undergoes con�nuous development. 
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